
CHAPTER 9

Prime models and ω-categoricity

Type spaces provide a lot of information about a theory. In fact, certain model-theoretic
properties of a theory turn out to correspond precisely with certain topological properties of
the type spaces. We will see two examples of this phenomenon here: we will prove that a
theory is ω-categorical if and only if all its type spaces are finite. We will also show that a
theory has what is called a prime model if and only if the isolated points are dense in every
type space of this theory. In proving these facts one uses quite heavily the properties of isolated
and non-isolated types that we established in the previous chapter (that is, they rely on the
fact that isolated types are realized in every model of a theory, while non-isolated types can be
omitted).

I should add that what I wrote in the previous paragraph is true only for sufficiently nice
theories. In fact, from now on we will often assume that a theory T

– is complete,
– has infinite models, and
– is formulated in a countable language.

If T satisfies these conditions, I will call T nice (this is not standard terminology). Note that
nice theories have models of every infinite cardinality κ, do not have finite models and are such
that every type over T is already realized in a countable model of T .

1. Atomic models

Before we embark on a study of ω-categoricity and prime models, we will first look at
atomic models.

Definition 9.1. A model A is atomic if it only realises isolated types in Sn(Th(A)); put
differently, a model is atomic if it omits all non-isolated types in Sn(Th(A)).

Before we proceed, let us unwind this definition. Suppose A is an atomic model and a is
a tuple of elements from A. Then, by definition, p: = tpA(a) is an isolated type over Th(A).
This means that it contains a complete formula ϕ(x) such that

Th(A) |= ϕ(x)→ ψ(x)

if and only if ψ(x) ∈ p. What this does is reducing the “local question” whether a satisfies a
formula ψ(x) to the “global question” whether A |= ϕ(x) → ψ(x). In other words, a model A
is atomic if for any tuple a of elements from A there is formula ϕ(x) such that for any formula
ψ(x) we have A |= ψ(a) if and only if

A |= ϕ(x)→ ψ(x).

Proposition 9.2. If A is atomic and a ∈ A, then (A, a) is atomic as well.
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Proof. Let b be a tuple of elements from (A, a). Look at (a, b). Since A is atomic there
is a formula ϕ(y, x) with A |= ϕ(a, b) and

A |= ϕ(y, x)→ ψ(y, z)

for every ψ(y, x) with A |= ψ(a, b). But then ϕ(a, x) is a formula satisfied by b such that

(A, a) |= ϕ(a, x)→ χ(x)

for every χ(x) with (A, a) |= χ(b) (because each such χ(x) can be obtained from a formula
ψ(y, x) with a substituted for y). �

For the further study of atomic models we need the notion of an elementary map.

Definition 9.3. Let M and N be two L-structures. A partial function f :X ⊆ M → N
from a subset X of M to N will be called an elementary map if

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(f(m1), . . . , f(mn))

for all L-formulas ϕ(x1, . . . , xn) and elements m1, . . . ,mn ∈ X. Note that this is equivalent to
saying that (M,x)x∈X ≡ (N, fx)x∈X .

Proposition 9.4. Let f : {a1, . . . , an} ⊆ A → M be an elementary map whose domain
is a finite subset of an atomic model A. Then for any a ∈ A there is an elementary map
g: {a1, . . . , an} ∪ {a} →M which extends f .

Proof. Suppose f : {a1, . . . , an} ⊆ A → M is an elementary map whose domain is a
finite subset of an atomic model A. Let us write a for the n-tuple 〈a1, . . . , an〉 and fa for
the n-tuple 〈fa1, . . . , fan〉. The fact that f is an elementary map is equivalent to saying that
(A, a) ≡ (M,fa).

So let a ∈ A. Since (A, a) is atomic by the previous proposition, there is a formula ϕ(x)
such that (A, a) |= ϕ(a) and

(A, a) |= ϕ(x)→ ψ(x)

for any formula ψ(x) such that (A, a) |= ψ(a). Because (A, a) |= ϕ(a) and (A, a) ≡ (M,fa), we
have (A, a) |= ∃xϕ(x) and (M,fa) |= ∃xϕ(x). So let m ∈ M be such that (M,fa) |= ϕ(m).
Then the type of a over (A, a) and the type of m over (M,fa) both contain the formula ϕ(x),
which is complete over Th(A, a) = Th(M,fa). This implies that these types are identical
and we have (M,a, a) ≡ (M,fa,m). So if we put g(a) = m and g(ai) = f(ai), then g is an
elementary map extending f . �

Theorem 9.5. Suppose A and M are two L-structures. If A is countable and atomic and
A ≡M , then A embeds elementarily into M .

Proof. Suppose {a0, a1, a2, . . .} is an enumeration of A. Using the previous proposition
one can construct an increasing sequence of elementary maps fn: {a0, . . . , an} → M , starting
with f0 = ∅ (which is an elementary map as A ≡M). But then f =

⋃
n∈N fn is an elementary

embedding A into M . �

Theorem 9.6. Suppose A and B are two L-structures which are both countable and atomic.
If A ≡ B, then A ∼= B.
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Proof. We use the back and forth method. So suppose {a0, a1, a2, . . .} and {b0, b1, b2, . . .}
are enumerations of A and B, respectively. Using Proposition 9.4 one can construct an in-
creasing sequence of elementary maps fn:X ⊆ A → B such that an ∈ dom(f2n+1) and
bn ∈ ran(f2n+2), starting with f0 = ∅. Then f =

⋃
n∈N fn is an isomorphism between A

and B. �

2. Prime models

Prime models are closely connected to atomic models.

Definition 9.7. Let T be a theory. A model M of T is called prime if it can be elementarily
embedded into any model of T .

Theorem 9.8. A model of a nice theory T is prime iff it is countable and atomic.

Proof. ⇒: Let A be a prime model of a nice theory T . As a nice theory has countable
models and A embeds in any model, A has to be countable as well. Moreover, if p is a non-
isolated type of T , then there is a model B of T in which it is omitted, by the Omitting Types
Theorem. Since A embeds elementarily into B, the type p will be omitted in A as well.

⇐: Let A be a countable and atomic model of a nice theory T and M be any other model
of T . Since T is complete, we have A ≡ M , so A embeds elementarily into M by Theorem
9.5. �

Corollary 9.9. Any two prime models of a nice theory T are isomorphic.

Proof. This follows from Theorem 9.6 and Theorem 9.8. �

Theorem 9.10. A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Proof. Let us first translate the statement that that isolated n-types are dense in Sn(T )
in more logical terms. To say that the isolated types are dense means that every non-empty
(basic) open set contains at least one isolated type: so any [ϕ] which is not empty contains
at least one isolated type p. But if p is isolated there is a complete formula ψ such that
{p} = [ψ] ⊆ [ϕ]. So the isolated types are dense in Sn(T ) if every consistent formula ϕ(x) is
the consequence over T of some complete formula ψ(x).

⇒: Let A be a prime model of T . Because a consistent formula ϕ(x) is realised in all
models of a complete theory, it is realized in A as well, by a say. Since A is atomic, ϕ(x)
belongs to the isolated type tpA(a), so is the consequence over Th(A) = T of some complete
formula ψ(x).

⇐: Suppose isolated types are dense in every type space Sn(T ). Then we define for each
natural number n a partial n-type

pn(x1, . . . , xn) = {¬ϕ(x1, . . . , xn) : ϕ is complete },
and claim that these are not isolated. Because if pn would be isolated there would be a consistent
formula ψ(x) such that

T |= ψ(x)→ ¬ϕ(x)

for any complete formula ϕ(x). But this would mean that ψ(x) could not be a consequence
of any complete formula, contradicting the fact that the isolated types are dense. So by the
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generalised omitting types theorem there is a countable model A omitting all pn. But a structure
omitting all pn has to be atomic. �

3. ω-categoricity

We will now show that the results that we have proved can be used to draw various con-
clusions about ω-categorical theories.

Theorem 9.11. (Ryll-Nardzewski Theorem) For a nice theory T the following are equiva-
lent:

(1) T is ω-categorical;
(2) all n-types are isolated;
(3) all models of T are atomic;
(4) all countable models of T are prime.

Proof. (1)⇒ (2): If Sn(T ) contains a non-isolated type p then there is a countable model
where p is realized and a countable model where p is omitted (by the Omitting Types Theorem).
So T cannot be ω-categorical.

(2) ⇒ (3): If all types of a theory T are isolated, then any model of T can only realize
isolated types. So all models of T are atomic.

(3) ⇒ (4) follows from Theorem 9.8.

(4) ⇒ (1) follows from Corollary 9.9. �

So a nice theory T is ω-categorical iff all types over T are isolated. But to say that every
type is isolated means that there are only finitely many types.

Proposition 9.12. The following are equivalent for any theory T :

(1) All n-types are isolated.
(2) Every Sn(T ) is finite.
(3) For for every n there are only finite many formulas ϕ(x1, . . . , xn) up to equivalence

relative to T .

Proof. (1) ⇔ (2) holds because Sn(T ) is a compact Hausdorff space.

(2) ⇒ (3) If there are only finitely many n-types p1, . . . , pn, then each pi is isolated by
some complete formula ψi. We claim that each formula with free variables among x1, . . . , xn is
equivalent over T to some disjunction of the ψi, showing that up to logical equivalence there
are only finitely many formulas with free variables among x1, . . . , xn.

If ϕ is any formula with free variables among x1, . . . , xn, then [ϕ] ⊆ Sn(T ), so

[ϕ] = {pi : i ∈ I}

for some I ⊆ {1, . . . , n}. But then

[ϕ] =
⋃
i∈I

{pi} =
⋃
i∈I

[ψi] = [
∨
i∈I

ψi],

so T |= ϕ↔
∨

i∈I ψi.
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(3) ⇒ (2): If every formula ϕ(x1, . . . , xn) is equivalent modulo T to one of

ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn),

then every n-type is completely determined by saying which ψi it does and does not contain. �

Corollary 9.13. If A is a model in a countable language and a is some tuple of elements
from A, then Th(A) is ω-categorical iff Th(A, a) is ω-categorical.

Proof. Every m-type p(a, x) of Th(A, a) determines an (n+m)-type p(y, x) of Th(A): so
if there are only finitely many (n+m)-types consistent with Th(A), then there are only finitely
many m-types consistent with Th(A, a).

Conversely, an m-type p consistent with Th(A) will be realized by some elements c in some
elementary extension B of A. If i:A→ B is the elementary embedding and b = ia, then (B, b)
is an elementary extension of (A, a). Then q = tp(B,b)(c) is a type over Th(A, a) extending

p. Since p ⊆ q, these extensions q have to be different for different types p, and therefore the
theory Th(A) cannot have more n-types than Th(A, a). So if the latter has only finitely many
n-types, then so does the former. �

All of this has the following odd consequence. There are nice theories Tn having, up to
isomorphism, n models, for n = 1, 3, 4, 5, 6, . . . (see Exercise 1 below). But the case n = 2 is
impossible.

Theorem 9.14. (Vaught’s Theorem) A nice theory cannot have exactly two countable mod-
els (up to isomorphism).

Proof. If T is a nice theory which has more than one model (up to isomorphism), then T
is not ω-categorical, so there must be some type p over T which is not isolated. But then there
is a countable model A in which p is realized, by a say, and a model B in which p is omitted.
Clearly, A and B cannot be isomorphic.

Since T = Th(A) is not ω-categorical, also Th(A, a) is not ω-categorical, by the previous
corollary. So, again, there is a type q over Th(A, a) which is not isolated. Now we make a case
distinction:

(1) If q is realized in (A, a), let (C, c) be a countable model in which it is omitted. Then C
cannot be isomorphic to A; but C can also not be isomorphic to B because C realizes
p, while B omits it.

(2) If q is omitted in (A, a), let (C, c) be a countable model in which it is realized. Then C
cannot be isomorphic to A; but C can also not be isomorphic to B because C realizes
p, while B omits it.

We conclude that any nice theory which is not ω-categorical must have at least three non-
isomorphic models. �

4. Exercises

Exercise 1. Let L3 = {<, c0, c1, c2, . . .}, where c0, c1, . . . are constant symbols. Let T3 be
the theory of dense linear orders with sentences added asserting c0 < c1 < . . ..
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(a) Show that T3 is a nice theory which has exactly three countable models up to iso-
morphism. Hint: Consider the questions: Does c0, c1, c2, . . . have an upper bound? A
least upper bound?

(b) Let L4 = L3 ∪ {P}, where P is a unary predicate. Let T4 be T3 with the added
sentences P (ci) and

∀x∀y
(
x < y → ∃z ∃w (x < z < y ∧ x < w < y ∧ P (z) ∧ ¬P (w))

)
.

In other words, P is a dense-codense subset. Show that T4 is a nice theory with
exactly four countable models.

(d) Generalise (c) to give examples of nice theories which have exactly n countable models
for n = 5, 6, . . .

Exercise 2. Let T be the theory of (R, <,Q) where Q is a predicate for the rational
numbers. Does T have a prime model?

Exercise 3. A theory T has quantifier elimination if for any formula ϕ(x) there is a
quantifier-free formula ψ(x) such that

T |= ϕ(x)↔ ψ(x).

(a) Suppose T is a nice ω-categorical theory and each p ∈ Sn(T ) contains a complete
formula which is also quantifier-free. Deduce that T has quantifier elimination.

(b) Use (a) to show that T = DLO and T = RG have quantifier elimination.


